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Error Analysis for a Stiff System Procedure 

By Arthur David Snider 

Abstract. The analysis of the local truncation error in a numerical scheme for 
integrating stiff differential equations, presented in a recent paper by Guderley and 
Hsu, holds only in special circumstances, but a more general analysis preserves the 
main conclusions. Several modifications of the scheme are also considered. 

1. In a recent paper, Guderley and H-1su [1] give an excellent detailed analysis 
of a predictor-corrector scheme invented by Certaine [2] for integrating stiff systems 
of differential equations. Section 3 of their paper presents a derivation of the local 
truncation error and argues that it can be simply related to the difference between the 
predicted and corrected values under some circumstances. The present paper attempts 
to clarify these circumstances, pointing out an effect overlooked in [1] but essentially 
recovering the original conclusion, and suggests a slight modification which improves 
the accuracy. 

2. Following [1], we transform a stiff system of ordinary differential equations 
of the form 

(1) dy/dx + Ay f(x, y) 

(x is the independent variable, y and f are vectors, and A is a matrix) into the equiv- 
alent integral equation 

(2) y(x) = e-A(x O)y(,) + f exp(A(r - x))f(r, y(r))dr. 

It is assumed that A is a diagonal matrix (the off-diagonal terms are absorbed by the 
function f). For the numerical scheme using the mesh points xn = x + nh, the 
predictor for y(xn +1) is 

(3) YPn+ = exp(-Ah)yn + | exp(A(,r -x 
x 

n 
where fi (r) is the polynomial interpolating f(x, y) at the (k + 1) points (xn -k Yn - k) 
to (xn, Yn). Then the polynomial f2(r) is formed, interpolating f(x, y) at the points 

(Xn-k+l Yn-k+l) to (xn, yn), and the point (xn+l, yn+l)- The equation for the 
corrector yo +1 is the same as (3), but with f2 (r) replacing fi (r): 

(4) cx 
(Yn + = exp(-Ah)yn + exp(A(r - x n+))f2(r)dr. 

n 
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When the scheme is stable, most of the truncation error is generated locally; 
hence the hypothesis is made that the values of y, for j < n are exactly equal to the 
true solution y(x1), and the local truncation error y(xn+ 1) - Yn+ 1 is to be computed. 
Under such conditions, the only errors involved in (3) and (4) come from the approxi- 
mation of the function f(x, y(x)). 

For the predictor formula, f1 interpolates f at its previous k + 1 values, assumed 
exact. Writing f(x) for f(x, y(x)), [1] correctly gives the difference as 

f(k+l)(x') k 

(5) I(x)=f(x)-fi(X) (k + 1)! (x-x n-k+j)l 

for some intermediate value x', which depends on x and which changes from component 
to component. Thus we can write 

Y(xn+l) -yp+l = exp(A(r -x 1))c1(T)dr. 
n 

Since the factors multiplying the components of f(k + 1)(x') are of fixed sign in the 
interval of integration, we can use the mean value theorem for integrals to derive 

(7) Y(xn + 1) = hk+2CPf(k+1)(), 

where 

(8) CP = CP(Ah) = f exp(Ah( - 1)) 11 (t + l)dt/(k + 1)!. 
o =o- 0 

Observe however, that in the corrector formula f2(x) interpolates f(x) at the 
points xn-k+ 1, Xn -k+,2x k + Xn - 1 ' and xn, but (and here is the effect overlooked 
in [1]) at x it takes the value f(xn + 1, Yp+ 1 ), which, unless f does not depend 
on y at all, is not equal to f(xn + 1' y(xn + 1))- Thus, the error is more complicated 
than equation (5). Adding and subtracting f3(x), the polynomial which interpolates 
f(x, y(x)) (exactly) at the points xn - k + 1 through xn + 1 and using the Lagrange 
interpolation formula, we can write 

f(x) - f2(X) = f(X) - f3(X) + f3(X) - /2(X) 

f(k+1)(X") k+1 

(9) (k + 1)! j= (x Xn-k+i) 
k X - 

Xn-k+j 
+ [f(xn +1' Y(xn +) -f(x p I~~)]Ifl 

for some intermediate x". This yields 

(1) y(xn+l)'-yc+l = hk+2CCf(k+l)( c) 

h+ h[f(x n + 1 ' Y(Xn + d) )-f(xn + sY + 1 )] 

where 

(11) Cc = CC(Ah) exp(Ah( - 1)) yi Q + l)d#/(k + 1)! 
0 1=-1 

and 
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1 k-1 
(12) 0 = O(Ah) =|exp(AhQ - 1)) rI Q + O)dS,k!. 

O 1=0 

In [1] it is argued that, in the circumstances when the components of f(x, y(x)) 
are given exactly by polynomials of degree k + 1 in x (so that f (k + 1 ) is constant), 
the ratios of corresponding components of y(xn + 1)- +1 to Y(xn +1) - +1 are 
constants; and they use this conclusion to derive an easily computed expression for 
the truncation error. We see that this statement is not precisely true because of the 
last term in (10); it would be true only if we also assume that f(x, y) is independent 
of y (i.e., f is simply a polynomial in x, in which case (1) can be integrated analyti- 
cally). However, if f(x, y) is smooth enough, we can write 

(13) f(k+1)qX) = f(k+1)(x n+) + 0(h), 

and similarly for f (k+l)); and because Y(xn + 1 Y is O(hk+ 2), 

(14) f(xn + 1 X Y(Xn + d ) f(X I Yn + 1) = O(h ), 
so that (7) becomes 

(15) y(xn+d) -yP+1 = h k+2CPf (k+ )(x 1)+(hk+3), 

and (10) becomes 

(16) y(xn 1) yc1 = hk+2Ccf(k+ )(X ) + O(h 3). 

Since CC, CP, and CC - CP all have nonsingular limits as h 0, we can manipulate 
these equations to express 

(17) (x ) _ yc ) 1 = Cc(CP - CC) (yc+ 1 y+ 1) +0(hk+3), 

a useful formula for numerically estimating the principal part of the truncation error 
if f(k+l)(xn+1) = 0. This idea reduces to Milne's method [3] in case A = 0. 

Guderley and Hsu, as we have mentioned, quote (17) without the error term 
and propose that it be used for step control. We agree wholeheartedly, but we wish 
to add that with very little additional work we can get one more order of accuracy by 
finally setting 

(18) y 1 = (C" - 

CC)-'(Cpyc+ 
- cyP 

since (17) implies (recall that these matrices are diagonal and commute) 

(19) y(xn + 1) -Yn + 1 = O(hk +3); 

this is just a variant of Richardson extrapolation. Of course, the stability computations 
of [1] can easily be modified accordingly (though they are still somewhat forbidding, 
and most practitioners will probably want to depend on step control for stability). 

3. Finally, we would like to comment on two other plausible modifications for 
improving the accuracy. First, we consider the possibility of iterating the corrector 
equation (4) until it is satisfied with the same number, Yn + appearing as the value 
on the left-hand side and as the interpolated value of f2(r) at x, + However, the only 



ERROR ANALYSIS FOR A STIFF SYSTEM PROCEDURE 219 

change in the analysis that would result is the appearance of yn+ 1 instead of yP +1 in 
equation (10), so that the leading term in (10) is still O(hk+2). This is an old story; 
when the predictor has the same order of accuracy as the corrector, the asymptotic 
behavior of the discretization error is not improved by iterating the latter [3, p. 261]. 

A more promising suggestion would be to retain the point (xn-k' Yn-k) in inter- 
polating f(x, y) in the corrector formula, so that (k + 2) values are used in (4). In 
this case, the error analysis would yield 

(20) y(xn+1) -yn+1 = hk + 3Ccf (k + 2)(j) 

h+ h[f(xn + 1 Y(Xn +d) 
- f(xnl Yn+ )] ' 

which is O(hk + 3). However, this would increase the complexity of the code (requiring 

a (k + 1)-point and a (k + 2)-point interpolation) and destroy the step control test (17): 
Surely the use of equation (18) is more advantageous. 
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